Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38612649

RESUMO

Herpes simplex virus type 1 (HSV-1) is a lifelong pathogen characterized by asymptomatic latent infection in the trigeminal ganglia (TG), with periodic outbreaks of cold sores caused by virus reactivation in the TG and subsequent replication in the oral mucosa. While antiviral therapies can provide relief from cold sores, they are unable to eliminate HSV-1. We provide experimental results that highlight non-thermal plasma (NTP) as a new alternative therapy for HSV-1 infection that would resolve cold sores faster and reduce the establishment of latent infection in the TG. Additionally, this study is the first to explore the use of NTP as a therapy that can both treat and prevent human viral infections. The antiviral effect of NTP was investigated using an in vitro model of HSV-1 epithelial infection that involved the application of NTP from two separate devices to cell-free HSV-1, HSV-1-infected cells, and uninfected cells. It was found that NTP reduced the infectivity of cell-free HSV-1, reduced viral replication in HSV-1-infected cells, and diminished the susceptibility of uninfected cells to HSV-1 infection. This triad of antiviral mechanisms of action suggests the potential of NTP as a therapeutic agent effective against HSV-1 infection.


Assuntos
Herpes Labial , Herpes Simples , Herpesvirus Humano 1 , Infecção Latente , Humanos , Queratinócitos , Antivirais/farmacologia
2.
Int J Mol Sci ; 24(5)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36902102

RESUMO

Herpes simplex virus type 1 (HSV-1) is a contagious pathogen with a large global footprint, due to its ability to cause lifelong infection in patients. Current antiviral therapies are effective in limiting viral replication in the epithelial cells to alleviate clinical symptoms, but ineffective in eliminating latent viral reservoirs in neurons. Much of HSV-1 pathogenesis is dependent on its ability to manipulate oxidative stress responses to craft a cellular environment that favors HSV-1 replication. However, to maintain redox homeostasis and to promote antiviral immune responses, the infected cell can upregulate reactive oxygen and nitrogen species (RONS) while having a tight control on antioxidant concentrations to prevent cellular damage. Non-thermal plasma (NTP), which we propose as a potential therapy alternative directed against HSV-1 infection, is a means to deliver RONS that affect redox homeostasis in the infected cell. This review emphasizes how NTP can be an effective therapy for HSV-1 infections through the direct antiviral activity of RONS and via immunomodulatory changes in the infected cells that will stimulate anti-HSV-1 adaptive immune responses. Overall, NTP application can control HSV-1 replication and address the challenges of latency by decreasing the size of the viral reservoir in the nervous system.


Assuntos
Herpes Simples , Herpesvirus Humano 1 , Humanos , Herpesvirus Humano 1/fisiologia , Replicação Viral , Antivirais , Estresse Oxidativo
3.
Foodborne Pathog Dis ; 17(3): 157-165, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31613646

RESUMO

We studied the efficacy of cold atmospheric-pressure plasma (CAP), generated by a two-dimensional array of integrated, coaxial, microhollow, dielectric barrier discharge plasma, against Salmonella enterica serovar Heidelberg (SH) on stainless steel, romaine lettuce, and chicken breast. Exposure of SH to CAP on a dry stainless steel surface had low bactericidal efficacy; only 2.5 log10 colony-forming units (CFUs) were inactivated after 10 min of exposure. On the other hand, the presence of moisture led to decontamination of ∼6.5 log10 CFUs after only 3 min. Although complete decontamination was not achieved on lettuce and chicken breast samples after 10 min of exposure, SH counts were reduced by ∼4.5 and 3.7 log10 CFUs, respectively. A partial suppression of bactericidal effects was observed on steel surfaces when it was coated with bovine serum albumin before spiking with bacteria and exposure to plasma, indicating that the proteinaceous nature of chicken meat may be partially responsible for lower efficacy of CAP on chicken muscles. The initial bacterial load was also found to affect the anti-SH efficacy; at high (∼6.5 log CFUs) and low (∼3.5 CFUs) initial counts, the time required for complete decontamination on stainless steel and lettuce decreased from 3 to 0.5 min and >10 to 1 min, respectively. However, the analysis of inactivation kinetics showed that effects of initial loads of contamination on the rate of bacterial inactivation were not statistically significant. This is consistent with other findings for conditions where both bacterial loads were under the multilayering threshold that might have affected the rate of killing.


Assuntos
Descontaminação/instrumentação , Descontaminação/métodos , Gases em Plasma/farmacologia , Salmonella enterica/efeitos dos fármacos , Animais , Contagem de Colônia Microbiana , Contaminação de Equipamentos , Contaminação de Alimentos , Microbiologia de Alimentos , Aves Domésticas/microbiologia , Sorogrupo , Aço Inoxidável
4.
Free Radic Biol Med ; 124: 275-287, 2018 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-29864482

RESUMO

Different chemical pathways leading to the inactivation of Pseudomonas aeruginosa and Staphylococcus aureus by a cold atmospheric pressure plasma jet (APPJ) in buffered and non-buffered solutions are reported. As APPJs produce a complex mixture of reactive species in solution, a comprehensive set of diagnostics were used to assess the liquid phase chemistry. This includes absorption and electron paramagnetic resonance spectroscopy in addition to a scavenger study to assess the relative importance of the various plasma produced species involved in the inactivation of bacteria. Different modes of inactivation of bacteria were found for the same plasma source depending on the solution and the plasma feed gas. The inactivation of bacteria in saline is due to the production of short-lived species in the case of argon plasma when the plasma touches the liquid. Long-lived species (ClO-) formed by the abundant amount of O. radicals produced by the plasmas played a dominant role in the case of Ar + 1% O2 and Ar + 1% air plasmas when the plasma is not in direct contact with the liquid. Inactivation of bacteria in distilled water was found to be due to the generation of short-lived species: O. &O2.- for Ar + 1% O2 plasma and O2.- (and .OH in absence of saline) for Ar plasma.


Assuntos
Gases em Plasma , Pseudomonas aeruginosa , Espécies Reativas de Oxigênio , Staphylococcus aureus
5.
PLoS One ; 13(3): e0194618, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29566061

RESUMO

Possible mechanisms that lead to inactivation of feline calicivirus (FCV) by cold atmospheric-pressure plasma (CAP) generated in 99% argon-1% O2 admixture were studied. We evaluated the impact of CAP exposure on the FCV viral capsid protein and RNA employing several cultural, molecular, proteomic and morphologic characteristics techniques. In the case of long exposure (2 min) to CAP, the reactive species of CAP strongly oxidized the major domains of the viral capsid protein (VP1) leading to disintegration of a majority of viral capsids. In the case of short exposure (15 s), some of the virus particles retained their capsid structure undamaged but failed to infect the host cells in vitro. In the latter virus particles, CAP exposure led to the oxidation of specific amino acids located in functional peptide residues in the P2 subdomain of the protrusion (P) domain, the dimeric interface region of VP1 dimers, and the movable hinge region linking the S and P domains. These regions of the capsid are known to play an essential role in the attachment and entry of the virus to the host cell. These observations suggest that the oxidative effect of CAP species inactivates the virus by hindering virus attachment and entry into the host cell. Furthermore, we found that the oxidative impact of plasma species led to oxidation and damage of viral RNA once it becomes unpacked due to capsid destruction. The latter effect most likely plays a secondary role in virus inactivation since the intact FCV genome is infectious even after damage to the capsid.


Assuntos
Argônio , Calicivirus Felino/metabolismo , Proteínas do Capsídeo/metabolismo , Gases em Plasma , Inativação de Vírus , Animais , Argônio/uso terapêutico , Coagulação com Plasma de Argônio , Infecções por Caliciviridae/metabolismo , Infecções por Caliciviridae/terapia , Infecções por Caliciviridae/veterinária , Calicivirus Felino/ultraestrutura , Doenças do Gato/metabolismo , Doenças do Gato/terapia , Doenças do Gato/virologia , Gatos , Células Cultivadas , Temperatura Baixa , Oxirredução , Oxigênio/metabolismo , Gases em Plasma/uso terapêutico , Proteólise
6.
Biointerphases ; 10(2): 029518, 2015 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-25947392

RESUMO

The mechanism of interaction of cold nonequilibrium plasma jets with mammalian cells in physiologic liquid is reported. The major biological active species produced by an argon RF plasma jet responsible for cell viability reduction are analyzed by experimental results obtained through physical, biological, and chemical diagnostics. This is complemented with chemical kinetics modeling of the plasma source to assess the dominant reactive gas phase species. Different plasma chemistries are obtained by changing the feed gas composition of the cold argon based RF plasma jet from argon, humidified argon (0.27%), to argon/oxygen (1%) and argon/air (1%) at constant power. A minimal consensus physiologic liquid was used, providing isotonic and isohydric conditions and nutrients but is devoid of scavengers or serum constituents. While argon and humidified argon plasma led to the creation of hydrogen peroxide dominated action on the mammalian cells, argon-oxygen and argon-air plasma created a very different biological action and was characterized by trace amounts of hydrogen peroxide only. In particular, for the argon-oxygen (1%), the authors observed a strong negative effect on mammalian cell proliferation and metabolism. This effect was distance dependent and showed a half life time of 30 min in a scavenger free physiologic buffer. Neither catalase and mannitol nor superoxide dismutase could rescue the cell proliferation rate. The strong distance dependency of the effect as well as the low water solubility rules out a major role for ozone and singlet oxygen but suggests a dominant role of atomic oxygen. Experimental results suggest that O reacts with chloride, yielding Cl2(-) or ClO(-). These chlorine species have a limited lifetime under physiologic conditions and therefore show a strong time dependent biological activity. The outcomes are compared with an argon MHz plasma jet (kinpen) to assess the differences between these (at least seemingly) similar plasma sources.


Assuntos
Argônio , Pressão Atmosférica , Proliferação de Células/efeitos dos fármacos , Células Epiteliais/fisiologia , Líquido Extracelular/efeitos da radiação , Gases em Plasma , Espécies Reativas de Oxigênio/análise , Fenômenos Bioquímicos/efeitos dos fármacos , Células Cultivadas , Células Epiteliais/efeitos dos fármacos , Líquido Extracelular/química , Humanos , Peróxido de Hidrogênio/análise
7.
Appl Environ Microbiol ; 81(11): 3612-22, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25795667

RESUMO

Minimal food-processing methods are not effective against foodborne viruses, such as human norovirus (NV). It is important, therefore, to explore novel nonthermal technologies for decontamination of foods eaten fresh, minimally processed and ready-to-eat foods, and food contact surfaces. We studied the in vitro virucidal activity of cold atmospheric gaseous plasma (CGP) against feline calicivirus (FCV), a surrogate of NV. Factors affecting the virucidal activity of CGP (a so-called radio frequency atmospheric pressure plasma jet) were the plasma generation power, the exposure time and distance, the plasma feed gas mixture, and the virus suspension medium. Exposure to 2.5-W argon (Ar) plasma caused a 5.55 log10 unit reduction in the FCV titer within 120 s. The reduction in the virus titer increased with increasing exposure time and decreasing exposure distance. Of the four plasma gas mixtures studied (Ar, Ar plus 1% O2, Ar plus 1% dry air, and Ar plus 0.27% water), Ar plus 1% O2 plasma treatment had the highest virucidal effect: more than 6.0 log10 units of the virus after 15 s of exposure. The lowest virus reduction was observed with Ar plus 0.27% water plasma treatment (5 log10 unit reduction after 120 s). The highest reduction in titer was observed when the virus was suspended in distilled water. Changes in temperature and pH and formation of H2O2 were not responsible for the virucidal effect of plasma. The oxidation of viral capsid proteins by plasma-produced reactive oxygen and nitrogen species in the solution was thought to be responsible for the virucidal effect. In conclusion, CGP exhibits virucidal activity in vitro and has the potential to combat viral contamination in foods and on food preparation surfaces.


Assuntos
Antivirais/farmacologia , Calicivirus Felino/efeitos dos fármacos , Calicivirus Felino/fisiologia , Viabilidade Microbiana/efeitos dos fármacos , Gases em Plasma/farmacologia , Ar , Antivirais/química , Argônio/farmacologia , Humanos , Oxigênio/farmacologia , Gases em Plasma/química , Fatores de Tempo , Carga Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...